In this course, recognizing and analyzing critical elements within machine components is essential to ensuring the reliability and safety of your designs. This worksheet provides a step-by-step framework to systematically identify these critical elements.

Step		Description	Sketch/Calculate
1.	Draw the Free-Body	Sketch the component and clearly label all applied forces,	
	Diagram	moments, and support reactions.	
2.	Solve for all reaction	Use static equilibrium equations to determine unknown	
	forces & moments	reactions.	
3.	Determine & sketch	Identify and illustrate the following internal loads	•
	internal loads for each	throughout the component:	
	segment.	- Axial (<i>N</i>) ← ()→	•
		- Transverse shear (V)	
		- Bending moment (<i>M</i>)	
		- Torsion (7)	•
4.	Identify critical cross-	Locate the section(s) where internal loads reach their	
	section(s)	extreme values.	
5.	Analyze stress	Calculate and sketch the stress distribution for each	
	distribution at critical	internal load at the identified cross-sections. Consider the	
	cross-section(s)	following load distributions:	
		- Axial: Uniform throughout cross-section.	
		- Bending: Zero at the neutral axis, maximum at the	
		farthest location from the neutral axis.	

		- Shear (transverse): Parabolic distribution, maximum at	
		the neutral axis, zero at outer fibers.	
		- Torsion: Zero at the center, maximum at the outer	
		radius.	
6.	Identify critical	Compute stress components at each potential location for	
	elements	the critical element(s) (e.g. top, bottom, left, right, and	
		center).	
		- Axial Stress: $\sigma = \frac{P}{A}$	
		- Shear Stress: $\tau = \frac{VQ}{Ib}$ (or look up maximum in a	
		table/equation sheet)	
		- Bending Stress: $\sigma = \frac{My}{I}$	
		- Torsional Shear Stress: $\tau = \frac{T\rho}{J}$	
7.	Represent the state of	Draw a stress element at each critical location to visualize	y y
	stress	the state of stress.	$\uparrow \qquad \uparrow$
			z z z z z
			$y \qquad y \qquad$